

December 2, 2011

Steven R. Marvin, PE

Pavement Design and Construction

DESIGN OVERVIEW

- Define Design
- What Information is Required?
- Where is information available?
- How is Information Used?

Design Type

- New Construction
 - Asphalt Concrete
 - Conventional
 - Full Depth
 - Pervious/Permeable
 - Portland Cement Concrete
 - Conventional
 - Pervious/Permeable

Design Type

- Resurfacing
 - Asphalt Concrete
 - Reflective crack control
 - Ride quality correction
 - Grade Modification
 - Portland Cement Concrete
 - Jointing Details

Design Type

- Rehabilitation
 - Reinforcement
 - Cold in-place recycling
 - Hot in-place recycling
 - Full Depth Reclamation
 - Partial Section Replacement
 - Vertical and Horizontal Realignment
 - Widening

SUSTAINABLE DESIGN

- Grade selection
- Median curb heights
- Wheel path location
- Surface drainage
- Material selection
- Future reinforcement
 - Wearing surface replacement

Pavement Design Components

Subgrade Soil Support

- Strength Criteria
 - R-value
 - CBR
 - Modulus
- Prevailing Conditions
 - Modification options
 - Lime Treatment
 - Cement Treatment
 - Emulsion Treatment

Pavement Design Components

Traffic Characterization

- Trucks
 - Statewide Average Weights
 - Location Specific Weights
- Buses
 - School bus
 - Scheduled transit buses
 - Bus Rapid Transit (BRT)
- Automobiles

Pavement Design Components

Design period

- 10 years
- 20 years
- Other
 - 25 years
 - 40 years

Pavement Design Components

Material Type

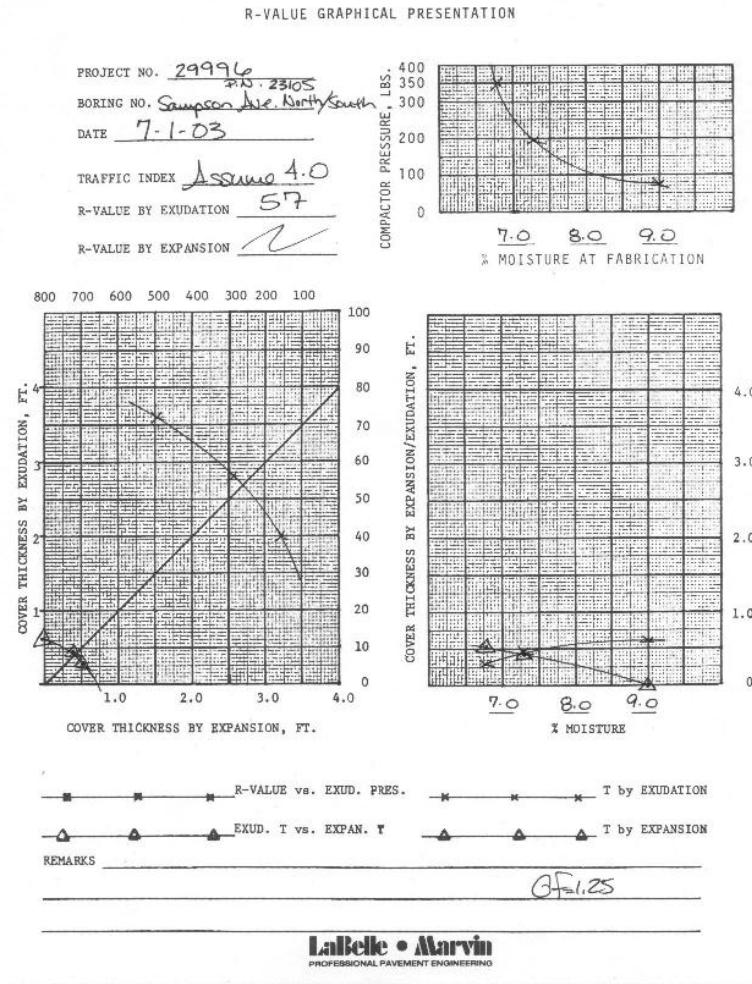
- Conventional Asphalt Concrete
 - Aggregate Size
 - Aggregate Shape
 - Binder Type
- Standard Specification Selection
 - Standard Specifications for Public Works Construction - Greenbook
 - Caltrans Standard Specifications
 - Superpave

Pavement Design Components

Material Type

- Portland Cement Concrete
 - Flexural Strength v Compressive Strength
 - Curing period
 - Plain v. Reinforced
 - Conventional Reinforcement
 - Fiber Reinforcement

Pavement Design Components


Material Type

- **Aggregate Base**
 - Crushed Aggregate Base
 - CAB - Greenbook
 - Recycled Aggregate Base
 - CMB/PMB – Greenbook
 - Class 2 - Caltrans
 - Stabilized Base
 - Cement Treated
 - Emulsion Treated
 - Lime/Flyash Treated

Subgrade Strength

- CBR, R-Value, Modulus
- CBR assumes degree of saturation
- R-value predicts most probable moisture condition
- Predates landscape islands, permeable pavements and urban run-off

R-value strength example

Back to the Future

- 1960's design impacted by the 70's oil embargo
 - Increased axle loads
 - Increased tire pressures
 - Weight variances for bus axles
 - Tractor trailer buses
 - Larger trash and recycle trucks
 - Tag overload axles

Traffic Use

- Number of trucks
- Number of axles
- Axle weights
- Number of buses
- Future weight increases
- Future tire pressure increases

Axle Weight Impact

- $\text{ESAL} = ((\text{axle load})/18,000)^{4.2}$
- 18,000 axle weight 1 ESAL
- 20,000 axle weight 1.6 ESAL
- 23,000 axle weight 2.8 ESAL
- 26,000 axle weight 4.6 ESAL
- 34,000 tandem axle 1.2 ESAL
- Automobile 0.0003 ESAL

Traffic Index - ESAL

$$\text{ESAL} = (\text{AXLE LOAD}/18,000)^{4.2}$$

Example 1	3 axle Truck	$\frac{1}{2}$ Load
	Front Axle	9,975 pounds
	Rear Axle	11,638 pounds
$\text{ESAL}_{\text{front}} =$	$(9,975/18,000)^{4.2}$	= 0.08
$\text{ESAL}_{\text{rear}} =$	$(11,638/18,000)^{4.2}$	= 0.16
$\text{ESAL}_{\text{total}} =$	$0.08 + 2(0.16)$	= 0.40

Traffic Index - ESAL

$$\text{ESAL} = (\text{AXLE LOAD}/18,000)^{4.2}$$

Example I 3 axle Truck Fully Loaded

Front Axle 12,500 pounds

Rear Axles 17,000 pounds each

$$\text{ESAL}_{\text{front}} = (12,500/18,000)^{4.2} = 0.21$$

$$\text{ESAL}_{\text{rear}} = (17,000/18,000)^{4.2} = 0.79$$

$$\text{ESAL}_{\text{total}} = 0.21 + 2(0.79) = 1.79$$

Traffic Index - ESAL

$$\text{ESAL} = (\text{AXLE LOAD}/18,000)^{4.2}$$

Example 1	2 axle Transit Bus	Fully Loaded
	Front Axle	12,500 pounds
	Rear Axle	23,000 pounds
$\text{ESAL}_{\text{front}} =$	$(12,500/18,000)^{4.2}$	= 0.21
$\text{ESAL}_{\text{rear}} =$	$(23,000/18,000)^{4.2}$	= 2.79
$\text{ESAL}_{\text{total}} =$	$0.21 + 2(2.79)$	= 5.81

Vehicle Comparison

- 1 Full Bus = 10,000 automobiles
- 1 Articulated Bus = 19,000 automobiles
- 1 10 Wheeler = 6,000 automobiles

Traffic Index

$$TI = 9(ESAL/1,000,000)^{.119}$$

- 50 ½ full 3 axle trucks/day 24/7/365 for 20 years

$$ESAL = (50)(7)(365)(20)(0.40) =$$

- 10 Year Design Period

TI 8.5

Traffic Index

- 1 Trash truck/week, 20 years

TI 4.5

- Add Green Waste Truck & Recyclables

TI 5.0

New Section Design

- R-Value + Traffic Index
- $T=0.0032(100-R)TI$

Resurfacing/Rehabilitation Design Components

Pavement/Section Condition

- Visual Condition
 - Cracking
 - Surface Wear
 - Distortion

Resurfacing/Rehabilitation Design Components

Pavement/Section Condition

- Construction History
 - Original As-built Sections
 - Widening/Realignment
 - Resurfacing
 - Utility Construction/Access
- Section Verification
 - Pavement Coring
 - Ground Penetrating Radar

Resurfacing/Rehabilitation Design Components

Pavement/Section Condition

- Layer Fatigue
 - Estimated Values
 - Component analysis
 - In-place strength testing
- Effective Strength
 - Deflection Based Component Analysis

Resurfacing/Rehabilitation Design Components

Pavement/Section Condition Requirements

- Layer Fatigue/Cracking
 - Reflection Crack Mitigation
 - Pavement Interlayer's
 - Cold In-Place Recycling
 - Hot In-Place Recycling
- Pavement Rutting/Shoving
 - Partial Section Replacement
 - Mixture Modification

Pavement Design Components

Material Type

- Stabilized Base
 - Cement Treated
 - Emulsion Treated
 - Lime/Flyash Treated
- Full Depth Reclamation
 - Cement Treated
 - Emulsion Treated
 - Lime/Flyash Treated

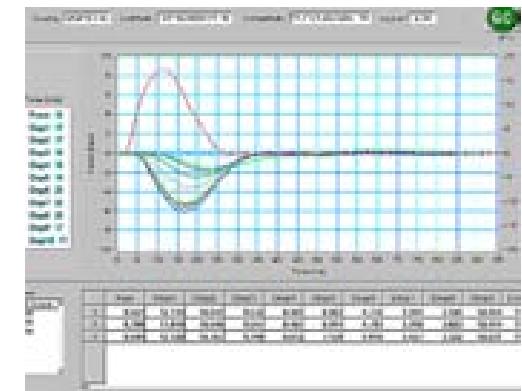
CONDITION ASSESSMENT

- **Visual Condition Survey**
 - Observed Defect
 - Severity of Defect
 - Frequency of Defect

- **Estimated impact of Defects**
 - Ride conditions
 - Reflection crack potential
 - Structural implications

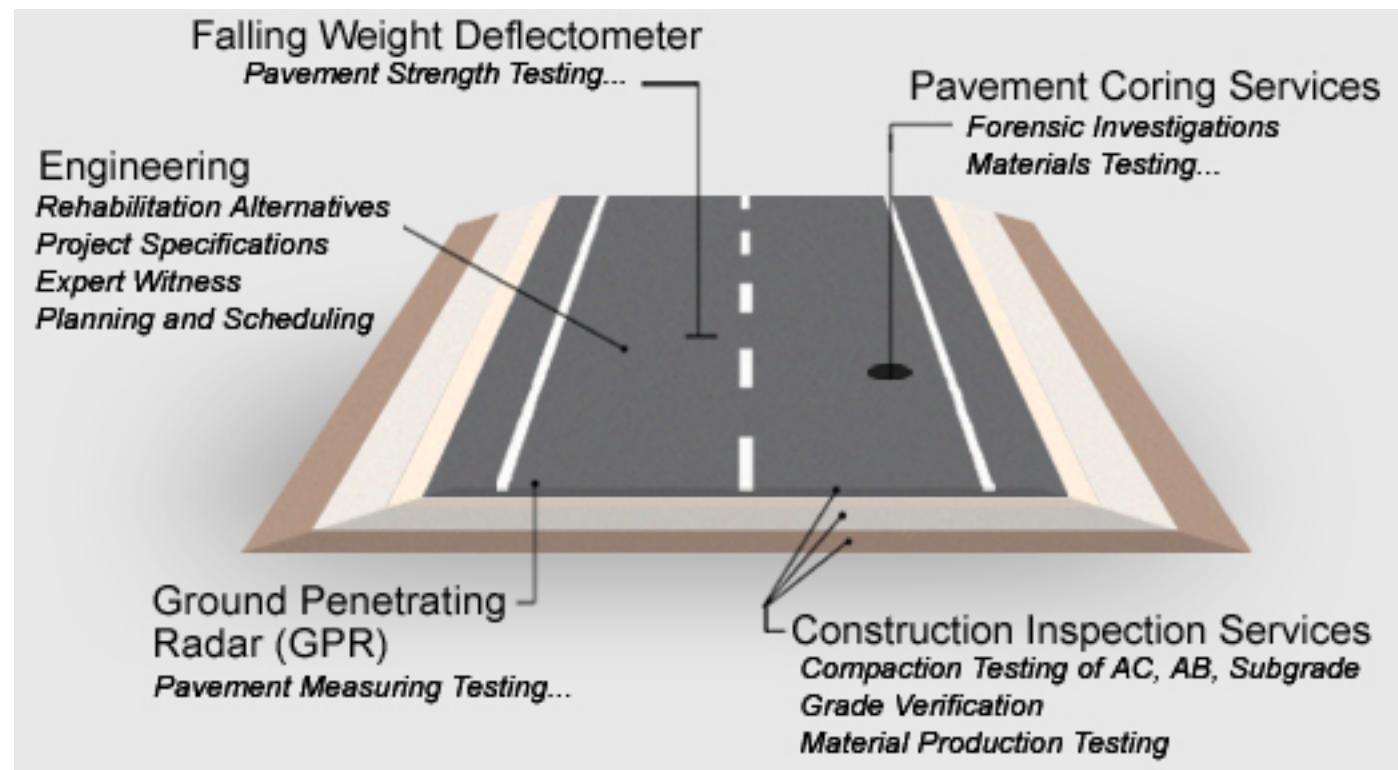
CONDITION ASSESSMENT

- Pavement Management
- History Documentation
 - Original As-built plans
 - Maintenance Records
 - Capital Improvement projects
 - Widening/realignment records
 - Utility access records


CONDITION ASSESSMENT

- Layer Fatigue

- Estimated Values
 - Pavement Management Reports
 - Arbitrary Component Analysis Estimates


- Measured Values
 - Falling Weight Deflectometer
 - Test Method 356
 - Condition Specific Reinforcement Requirement

CONDITION ASSESSMENT

- Collateral Constraints
 - Crown Height
 - Cross Slope
 - Median Curbs
 - Median Gutters
 - Storm Water Hydraulics

CONDITION ASSESSMENT

Asphalt Concrete Materials

- SSPWC includes 14 Conventional Asphalt Concrete Mixes
 - Section 203-6
 - Section 400

- Two most popular binder types PG 64-10 and PG 70-10 (previously AR4000 and AR 8000 – previously 85-100 and 60-70)

Asphalt Concrete Materials

- Caltrans
- Old Standard Specification
 - Eight (8) conventional asphalt concrete gradations
 - Type A and Type B Aggregate
 - A total of 32 different mixes
- New Standard Specification
 - Type A and Type B Aggregate
 - Type C Asphalt Concrete

Asphalt Concrete Materials

Asphalt Rubber Hot Mix

- Greenbook
 - Class B, C and D
- Caltrans
 - Gap Grade
 - Open Graded

Asphalt Concrete Materials

Additional Variables

- Performance Grade Bonders
 - Full range 35+ grades
- Polymer Modified Binders
 - Specialty Applications

Material Selection

- Over 100 mixes available
- Material must be consistent with use
- Expectations should match reality
- Mix design v. Blend Sheet
- QA/QC

Material Selection

- Engineers focus on intent
- Engineers view the mid-point of the specification as a target
- Contractors focus on the letter of the specification
- Inspection QC/QA must sort out the differences

Asphalt Concrete Production

- Batch Plant
- Drum Drier Plant
- Recycled asphalt concrete
 - Cold In-place recycling
 - Central Place Cold Recycling
 - Hot In-Place recycling

Placement

- Hand placement
- Skip loader/spreader bar
- Paving machine
 - Truck propelled
 - Self propelled
 - Tamping screed
 - Vibrating screed

Placement

- Thickness control
 - Grade tolerances
 - Aggregate base
 - Asphalt concrete
 - Thickness loss during compaction

Placement

- Temperature
 - Impacts placement thickness
 - Impacts surface tolerances
 - Impacts surface appearance
 - Impacts roller patterns

Placement

- Hand work
 - Lute design
 - Lute use
 - Balancing joint
 - Texture changes

Compaction

- Roller types
 - Rubber tire
 - Steel wheel
 - Static
 - Vibratory
 - Sizes - typical
 - 3-5 ton
 - 5 -8 ton
 - 10-12 ton
 - 12-15 ton

Compaction

- Paving Machine
 - 78 – 80%
- Breakdown Rolling
 - 91-93%
- Intermediate Rolling
 - 94-96%
- Finish Rolling
 - 95-96%

Minimum needs for Inspection

- **Plans**
 - Thickness(s)
 - Site documentation

- **Specifications**
 - Mix design
 - Grade tolerances
 - Compaction requirements

Critical Elements

- Grade tolerances
 - Subgrade uniformity
 - Rough grade is +/- 0.10'
 - Acceptable subgrade is +/- 0.04' w/AB or +/- 0.02' w/o AB
 - Aggregate Base
 - Acceptable grade is +/- 0.02'
 - Asphalt Concrete
 - Acceptable finish grade is +/- 1/8" in 10' - Greenbook
 - Acceptable finish grade is +/- 0.01' in 12' – Caltrans
 - Profilograph and/or ride tolerances in transition
 - Section Thickness is result

Critical Elements

- Mix type compliance
 - Spec mixes v. non-spec mixes
 - Mix Design v. Mix Blend Sheet
 - Field Inspection verification
 - Batch plant verification
 - Laboratory verification

Critical Elements

- Production Rates
 - Segregation
 - Screed capabilities
 - Width of placement
 - Hand work
 - Equipment placement
 - Jointing detail
 - Overlapping
 - Rolling capabilities
 - Thickness
 - Temperature
 - Roller speed
 - Start and stop
 - Cold zones

Design Summary

- Grade tolerances
 - Thickness is result
- Mix type compliance
 - Spec mixes v. non-spec mixes
- Production rates
 - Segregation
 - Start and stop
- Hand work techniques
 - Segregation
- Rolling techniques
 - Speed
 - Patterns

Construction Summary

- Grade tolerances
- Mix type compliance
- Production rates
- Hand work techniques
- Rolling techniques

CONTACT INFORMATION

Steve Marvin

smarvin@labellemarvin.com

714-546-3468

www.labellemarvin.com

